Search results for " antisense oligonucleotides"

showing 2 items of 2 documents

Musashi-2 contributes to myotonic dystrophy muscle dysfunction by promoting excessive autophagy through miR-7 biogenesis repression

2021

Skeletal muscle symptoms strongly contribute to mortality of myotonic dystrophy type 1 (DM1) patients. DM1 is a neuromuscular genetic disease caused by CTG repeat expansions that, upon transcription, sequester the Muscleblind-like family of proteins and dysregulate alternative splicing of hundreds of genes. However, mis-splicing does not satisfactorily explain muscle atrophy and wasting, and several other contributing factors have been suggested, including hyperactivated autophagy leading to excessive catabolism. MicroRNA ( miR ) -7 has been demonstrated to be necessary and sufficient to repress the autophagy pathway in cell models of the disease, but the origin of its low levels in DM1 was…

autophagyMSI2 antisense oligonucleotides autophagy miR-7 muscle atrophy muscle dysfunction myotonic dystrophy myotubesRM1-950BiologyMyotonic dystrophyMSI2chemistry.chemical_compoundDrug DiscoverymedicineMyocyteGene silencingMBNL1muscle dysfunctionmyotonic dystrophyMyogenesisAutophagymiR-7Skeletal musclemedicine.diseaseMuscle atrophyCell biologymedicine.anatomical_structurechemistryMolecular MedicineTherapeutics. Pharmacologyantisense oligonucleotidesmedicine.symptomMolecular Therapy - Nucleic Acids
researchProduct

Allele-specific silencing as therapy for familial amyotrophic lateral sclerosis caused by the p.G376D TARDBP mutation

2022

Abstract Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the degeneration of motor neurons. There is no treatment for this disease that affects the ability to move, eat, speak and finally breathe, causing death. In an Italian family, a heterozygous pathogenic missense variant has been previously discovered in Exon 6 of the gene TARDBP encoding the TAR DNA-binding protein 43 protein. Here, we developed a potential therapeutic tool based on allele-specific small interfering RNAs for familial amyotrophic lateral sclerosis with the heterozygous missense mutation c.1127G>A. We designed a small interfering RNA that was able to diminish specifically the express…

antisense oligonucleotideCellular and Molecular NeurosciencePsychiatry and Mental healthsiRNA therapyNeurologyallele-specific silencingTDP-43ALS TDP43 siRNA therapy antisense oligonucleotides allele specific silencingSettore MED/26 - NeurologiaALSantisense oligonucleotidesSettore MED/03 - GENETICA MEDICABiological Psychiatry
researchProduct